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Abstract 

There is a growing interest in using object-oriented analy-
sis and design techniques in conjunction with UML to de-
velop large complex systems.  This paper presents an itera-
tive approach for studying the timing constraints of a sys-
tem-of-systems using models expressed in UML for Real-
time extension (UML-RT), which are then translated into 
coarse-grained simulation models that are exercised using 
the OMNeT++ simulation engine.  The integration of the 
UML-RT models with simulation models provides a seam-
less process for rapidly constructing executable prototypes 
for the purpose of analyzing timing constraints and deriv-
ing system requirements from those constraints.  The effec-
tiveness of the approach is demonstrated with a case study 
of the sensor-netting capability of a missile defense system. 

1 Introduction 

There is a growing interest in using object oriented analysis 
and design techniques in conjunction with the Unified 
Modeling Language (UML) [6] to develop system-of-
systems. The object-oriented designs of these systems tend 
to be very large and complex [1,2]. Feasible requirements 
for large dynamic systems are difficult to formulate, under-
stand, and meet without extensive prototyping. Modeling 
and simulation holds the key to the rapid construction and 
evaluation of prototypes early in the development process. 
We use an iterative process (Figure 1) that starts with Use 
Case analysis to identify user needs—defined as high-level 
system capabilities—and the construction of an object 
model to capture essential information about the environ-
ment in which this system will operate.  However, adopting 
UML, we could not specify the architectural design with a 
formal architectural language such as MetaH [12]. Instead, 
in our approach we develop an object-oriented architecture 
of the system using UML-RT [8].  We refine the internal 
structures of the component systems using the Hierarchy 

plus Input, Process, Output (HIPO) technique [3] until the 
components are readily mapped to modules of the target 
simulation written in OMNeT++ [11]. We use the simula-
tion to study the feasibility and correctness of the timing 
requirements and apply the lessons learned to modify the 
system architecture and timing constraints accordingly.  

In comparison to other attempts to extend UML syntax to 
support automatic generation of simulation code from de-
sign, such as in [7,10], our initial investigation leads us to 
tentatively conclude that UML-RT is much better suited for 
use in modeling complex system architectures. We demon-
strate later in the paper that there is a straight-forward map-
ping between a UML-RT architectural model and the corre-
sponding OMNeT++ simulation model, opening up the op-
portunity for automatic generation of simulation control 
codes from UML-RT models. 

  

 

 

 

 

 

 

 

 

 

 

The rest of the paper is organized as follows. Section 2 pro-
vides an introduction to UML-RT and Section 3 gives an 
overview of the OMNeT++ system. Section 4 presents a 
case study of the missile defense system to demonstrate the 
use of UML-RT in system architecture specification and 
their mappings to the OMNeT++ executable model. Section 
5 presents a discussion of the approach.  

Figure 1. The Iterative Prototyping Process 
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2 UML-RT 

UML-RT is an extension of UML and is based on the con-
cepts underlying the ROOM language [9]—an architectural 
definition language developed specifically for complex real-
time software systems. UML-RT provides three principal 
constructs (capsules, ports, and connectors) for modeling 
the structures of a real-time system. Capsules are special-
ized UML active objects for modeling self-contained com-
ponents of a system with the following two restrictions: (1) 
capsule operations can only be called within the capsule and 
(2) capsules can only communicate with other capsules 
through special mechanisms called ports. Ports are objects 
within a capsule that act as interfaces on the boundary of the 
capsule. A capsule may have one or more ports through 
which it is interconnected with other capsules via connec-
tors. Connectors represent communication channels through 
which capsules communicate via the sending and receiving 
of messages. Each port is associated with a protocol that 
captures the semantics of the interactions between the port 
and its counterpart on the opposite end of the connector. 

Figure 2 shows a simple UML-RT model consisting of a set 
of sensor capsules, a set of sensor fusion processor capsules 
and a sensor net capsule. Each sensor capsule has three 
ports. It uses one of the ports to communicate with its asso-
ciated sensor fusion processor capsule. Each sensor fusion 
processor capsule has multiple ports for communication 
with its associated sensors (as indicated by the multi-object 
icon) and uses a single port to communicate with the sensor 
net capsule. The “white-filled” icons on the sensor fusion 
processor capsule indicate that the sensor fusion processor 
capsule plays the “slave” role of a binary protocol when 
communicating with its associated sensor capsules. A cap-
sule may contain collaborating sub-capsules, as shown Fig-
ure 3, and may have at most one state machine that specifies 
the dynamic behavior of the capsule. 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

3 OMNeT++ 

OMNeT++, which stands for Objective Modular Network 
Testbed in C++, is an object-oriented discrete-event simu-
lator primarily designed for the simulation of communica-
tion protocols, communication networks and traffic models, 
and models of multiprocessor and distributed systems.  
Similar to UML-RT, OMNeT++ provides three principal 
constructs (modules, gates, and connections) for modeling 
the structures of a target system. An OMNeT++ simulation 
model consists of a set of modules communicating with 
each other via the sending and receiving of messages. Mod-
ules can be nested hierarchically. The atomic modules are 
called simple modules; they are coded in C++ and executed 
as co-routines on top of the OMNeT++ simulation kernel. 
Gates are the input and output interfaces of the modules. 
Messages are sent out through output gates of the sending 
module and arrive through input gates of the receiving 
module. Input and output gates are linked together via con-
nections. Connections represent the communication chan-
nels and can be assigned properties such as propagation 
delay, bit error rate and data rate.  

Messages can contain arbitrarily complex data structures 
and can be sent either directly to their destination via a con-
nection or through a series of connections (called route). 
Figure 4 shows a simple OMNeT++ model consisting of 
five modules: a missile (ICBM), a ground sensor (Ground-
Sensor), a satellite sensor (SatSensor), a sensor fusion proc-
essor (SFP), and the sensor net (SensorNet).  
 

 

 

 

 

 

 

 

 

 
The OMNeT++ models are expressed in terms of a topol-
ogy description language NED (NEtwork Description). A 
NED file may contain a set of import statements, a set of 
channel definitions, a list of simple and compound module 
declarations, and a network definition (Figure 5). Each 
module can have parameters to customize module topology, 
module behavior, and module communication. OMNeT++ 
provides a Graphical Network Editor (GNED) for viewing 
and editing of NED files (Figure 6). 

Figure 2. A UML-RT model 
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Figure 3. The internal view of the sensor capsule 
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In addition to GNED, OMNeT++ also provides a compiler 
(NEDC) to generate the simulation control code and a user-
interface from the NED files. The control code calls the 
functions provided in the OMNeT++ simulation kernel li-
brary and allows the user to control the simulation execu-
tion either via a command-line (Cmdenv) or a graphical 
user (Tkenv) interface. Data from the simulation executions 

are saved as specially formatted text files which, after some 
preprocessing using sed, awk or perl, can be read into math 
packages such as Matlab or Octave, or imported into 
spreadsheet programs. OMNeT++ also provides a vector-
plotting tool (Plove) for filtering (e.g., averaging, trunca-
tion, smoothing) the output data and displaying the results 
as graphs.  

4 Missile Defense System – A Case Study 

In this section, we illustrate the iterative approach with a 
hypothetical ballistic missile defense system (BMDS). The 
BMDS is an integrated system-of-systems which provides a 
layered defense that employs complementary sensors and 
weapons to engage threat targets by land, sea, air, or space 
in the boost, midcourse, and terminal phases of flight, and 
incrementally deploying that capability.  In parallel, sensor 
suites and the battle management and command and control 
(BMC2) software will be developed to form the backbone 
of the BMDS.  

4.1 Use Case Analysis 

To understand the requirements and constraints of the pro-
posed system, we developed six UML use cases to identify 
the external agents and systems that are involved in a typi-
cal missile-defense scenario and the necessary interactions 
between these entities: 

1. Detect Potential Threat Ballistic Missile - The goal of 
this use case is to detect possible threat ballistic mis-
siles, and push the track data onto the sensor net. 

2. Generate and Transmit a Local Track - This is a sub-
use case of 1. The goal of this use case is to have a sen-
sor generate a local track based on valid detection pa-
rameters of the sensor. 

3. Cooperatively Track and Classify Threat Ballistic Mis-
siles - The goal of this use case is to identify and type-
classify the threat ballistic missiles, develop fire-quality 
tracks for engagement solutions, and forward the target 
track list to Weapons Net. 

4. Cooperative Weapons Assignment - The goal of this 
use case is to assign targets to weapons via cooperative 
target bidding. 

5. Engage Targets - The goal of this use case is to engage 
threat ballistic missile. 

6. Assess Kill - The goal of this use case is to determine 
the kill status of the threat ballistic missile. 

We then developed sequence diagrams based on the use 
cases to identify the flow of events and messaging between 
the external agents and the BMC2 system. Figure 7 shows 
the sequence diagram for use cases 1 and 2, where the flow 

//----------------------- 
// file: missile.ned 
//----------------------- 
 
// modules definitions 
simple ICBM  
 gates:  
  out: out1;  
  out: out2; 
  in: in1;  
  in: in2; 
endsimple  
 
simple GroundSensor  
 gates:  
  ••• 
endsimple  
 
simple SatSensor 
 gates: 
  ••• 
endsimple 
 
simple SFP 
 gates:  
  ••• 
endsimple  
 
simple SensorNet  
 gates:  
  ••• 
endsimple 

 
// the Missile network model 
module Missile  
 parameters:  
  data_rates : numeric,  
  radar_size: numeric, 
  fused_size: numeric, 
  ir_size: numeric; 
 submodules:  
  ICBM: ICBM;  
   display: "o=#ff0000;p=79,59;b=36,32"; 
  GroundSensor: GroundSensor;  
   display: "p=75,220;i=router;b=32,32"; 
  SatSensor: SatSensor; 
   display: "p=150,150;i=router;b=34,34"; 
  SFP: SFP;  
   display: "p=323,221;i=pc;b=38,32"; 
  SensorNet: SensorNet;  
   display: "o=#0000ff;p=323,53;b=38,32"; 
 connections:  
  ICBM.out1 --> delay .5ms --> GroundSensor.m_in;  
  ICBM.in1 <-- delay .5ms <-- GroundSensor.m_out;  
  GroundSensor.out -->  
   delay 250ms datarate data_rates --> SFP.in1;  
  GroundSensor.in <--  
   delay 250ms datarate data_rates <-- SFP.out1;  
  ICBM.out2 --> delay 130ms --> SatSensor.m_in; 
  ICBM.in2 <-- delay 0ms <-- SatSensor.m_out; 
  SatSensor.out -->  
   delay 500ms datarate 93000 --> SFP.in2; 
  SatSensor.in <--  
   delay 0ms datarate 93000 <-- SFP.out2; 
  SensorNet.out --> delay 250ms --> SFP.s_in;  
  SensorNet.in <-- delay 250ms <-- SFP.s_out;  
 display: "p=10,10;b=405,265"; 
endmodule  
 

// Instantiates a Missile network. 
network UseCase1 : Missile  
 parameters:  
  radar_size = input(100000, "Size of Radar Track File"), 
  fused_size = input(200000, "Size of Fused Track File"), 
  ir_size = input(1000, "Size of IR Contact Report"), 
  data_rates = input(1024000, "Radar to SensorNet Data Rate");  
endnetwork  

Figure 5. The Network Description file 

Figure 6. The Graphical Network Editor 



 

of events begins with the assumption that a ballistic missile 
threat exists and that there is a sufficient amount of time to 
conduct deliberate planning prior to the anticipated first 
available launch window.  In this instance the commanders, 
via the BMC2 and Sensor Net, issue a warning in the form 
of cueing messages for sensors to observe a specific region.  
Once a missile is detected, the sensor commences continu-
ous tracking of the missile and forwards a cueing message 
to the BMC2 and Sensor Net so that other sensors can de-
tect and track the missile. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We refer the readers to [4,5] for details of the use cases and 
the rest of the sequence diagrams.  

4.2 A Distributed BMC2 Architecture 

The huge complexity, physically dispersed geography, and 
distributed nature of global ballistic missile defense neces-
sitate a distributed approach to ballistic missile defense bat-
tle management. Based on the use cases, we developed the 
top level of a distributed architecture shown in Figure 8, 
along with the corresponding UML-RT model shown in 
Figure 9. 

The overarching BMC2 System will consist of a loosely 
coupled set of regional BMC2 systems; geographically 
separated networks interconnected much like the Internet.  
The intent is to allow all participants to pull the information 
from specific regions as desired, but also to ensure that 
time-critical information can be pushed to those geographi-
cally collocated units that need it to effect destruction of a 
threat missile or to hand-off the information to non-geo-
graphically collocated units as a missile transits from one 
region to another.  

Each regional BMC2 system consists of three major sub-
systems: a C2BMC node, a Sensor Net and a Weapons Net, 

where the C2BMC node refers to the automation support 
for the Command/Control, Battle Manager and Communi-
cation (C2BMC) functions, the Sensor Net refers to a dis-
tributed system that provides the sharing of track data 
among Sensor Fusion Processors, Weapons Net, Weapon 
Platforms and the C2BMC node, and the Weapons Net re-
fers to a distributed system for cooperative target assign-
ment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We refined the internal structures of the Sensor capsule, the 
Sensor Net capsule and the Sensor Fusion Processor cap-
sule using the HIPO technique.  Figures 10 shows the inter-
nal structure of the Sensor Fusion Processor (SFP) capsule, 
which consists of five sub-capsules (Sensor Interface, Track 
Fusing, Collaborative Fusion, Track List and Sensor Net 
Interface).  

Figure 9. The UML-RT model for the BMC2 architecture 
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Figure 8. A distributed BMC2 architecture 
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Figure 7. The sequence diagram for use cases 1 and 2 



 

 

 

 

 

 

 

 

 

 

 

 

 

The Sensor Interface capsule serves as the primary interface 
to all assigned sensors. It sends all tracks to the Track Fus-
ing capsule if it is receiving data from more than one sen-
sor; otherwise, it passes the data directly to the Collabora-
tive Fusion capsule. The Track Fusing capsule takes multi-
ple tracks per target from the Sensor Interface capsule, cor-
relates or fuses them into one single track per target in real 
time.  It also performs track discrimination as a backup to 
the sensor’s native discrimination capability to prevent 
overload on the Sensor Net. The Collaborative Fusion cap-
sule takes fused or raw local tracks (one per target) and 
fuses them with tracks received from other SFPs via the 
Sensor Net. The Track List capsule is responsible for com-
piling and providing the internal list of tracks for the SFP 
and preventing duplicates.  It provides this data to both the 
Track Fusing capsule and the Collaborative Fusion capsule, 
and provides this information to other SFPs upon request 
via the sensor net.  It also serves as a repository for com-
mands received from the Sensor Net. The Sensor Net Inter-
face capsule is responsible for pushing tracks from the 
Track List capsule to the Sensor Net and routing the incom-
ing tracks from other SFPs via the Sensor Net to the Col-
laborative Fusion Capsule. (Readers can refer to [5] for the 
complete UML-RT models.) 

4.3 The OMNeT++ simulation model the Sensor 
Fusion Processor 

In order to perform a systematic analysis of the BMDS tim-
ing constraints and requirements, we developed an OM-
NeT++ discrete event simulation of the Sensor Fusion 
Processor (SFP) as a model for simulating the entire system, 
using the UML-RT model as a template for incorporating 
system requirements based on the documented artifacts.  
The simulation is used to determine whether the require-
ments have been achieved, that the system operates within 
acceptable parameters, and to discover any other possible 
timing considerations and constraints.   

As numerous sensors provide track data at asymmetric 
rates, the SFP must discriminate, filter, and fuse the current 
track data into a single track and forward that track out to 
the Sensor Net.  The SFP must also compare that track with 
a track database to determine if it is to be used to update an 
existing track or develop a new track.  Additionally, devel-
oping a rough track classification requires a table look up, 
data comparison, and association based on known paramet-
ric data.  

The OMNeT++ simulation shown in Figure 11 was created 
to identify potential bottlenecks at the Sensor Fusion Proc-
essor. It consists of twelve modules simulating the five sub-
capsules of the Sensor Fusion Processor interfacing with 
two satellite Sensor capsules, four ground radar Sensor cap-
sules and the Sensor Net capsule. The internal structures of 
these capsules are mapped to the C++ code of the corre-
sponding modules. Figure 12 shows the graphical user inter-
face for the simulation model shown in Figure 11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4 Simulation Results 

A parametric (i.e., sensitivity) analysis involving multiple 
simulation runs was conducted to determine what were the 
most significant timing constraints on the system and at 

Figure 12. The Graphical User Interface 

Figure 10. The internal structure of the  
Sensor Fusion Processor capsule 
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Figure 11. The OMNeT++ Model the Sensor Fusion Processor 



 

what point they became critical. A methodical approach was 
utilized in the process of obtaining data where one input 
value was varied and the others remained constant to see 
how that one variable impacted the system.  For data input 
values (data rates, track message sizes, sensor update delay, 
number of sensors, collaborative fusion requests, module 
processing time, track list access time, master track list 
broadcast times and track fusion time), we utilized commer-
cial data-transmission rates and approximate system clock-
speed values for internal timing.  In doing so we abstracted 
the data points and precluded any implication of existing or 
developmental systems, while still obtaining valid research 
data. Tables 1 through 12 summarize the results of the 
simulation runs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Varying Track Message Sizes 

Table 3. Varying Ground-based Radar Update Delay 

Table 1. Varying Data Rate 

Table 4. Varying Space-based IR Update Delay 

Table 5. Varying Number of Ground-based Radar Sensors 

Table 6. Varying Number of Space-based IR Sensors 

Table 7. Varying Collaborative Fusion Requests 

Table 8. Varying Module Processing Time 

Table 9. Varying Track List Access Time 

Table 10. Varying Time to Perform Track Fusion 



 

 

 

 

 

 

 

 

 

 

 

 

 

The most significant timing issue that was obtained through 
multiple iterations of the simulation was that as the track 
load increased, whether it was from large numbers of tracks 
being reported, moderate numbers of tracks being reported 
by large numbers of sensors, or when the sensors increased 
their update rates, the Track List capsule (LTC) which is 
responsible for maintaining and broadcasting the update 
track list would become saturated, thus increasing the time 
to transmit track data.  This is evidenced by corresponding 
increases of both the TLC’s utilization and average time to 
broadcast tracks on the Sensor Net with an increase in the 
number of tracks reported or sensors updating. 

We observed that track message size and data throughput 
rates had little impact on the time to transmit track data.  
Additionally, as the number of track-collaboration requests 
increased, the number of normal tracks dropped to zero and 
collaboratively-fused tracks increased, but the impact to the 
overall average track-process time is insignificant.  As to be 
expected, increases in module-processing time, track-list-
comparison times, and track-fusion times all had corre-
sponding increases to the average track processing and 
throughput values. (Reader can refer to [5] for the detail 
data tables and line graphs.) 

5 Discussions and Conclusions 

In a field of study that is not well defined such as ballistic 
missile defense and which consists of systems of systems, 
one must discover and develop methodologies for refining 
requirements and ensuring a project’s purpose is success-
fully accomplished.  The Use Case-Model-Simulation feed-
back cycle that we used is a systematic engineering meth-
odology for developing such highly complex systems of 
systems. Through the use of this methodology, we found it 
necessary to redesign the Sensor Fusion Processor’s Track 
List capsule (TLC) in order to handle heavier work loads, in 
this case more traffic. Figure 13 shows the UML-RT model 

of the original design where it uses a single TFC-CFC 
Communications capsule to handle all local data streams 
received from the Track Fusing capsule and the Collabora-
tive Fusion Capsule, and uses a single Track Registry cap-
sule to maintain the SFP’s master list of all perceived valid 
tracks as well as any additional tracks received from the 
Sensor Net. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14 shows the revised design where it uses two cap-
sules (the TFC Communications capsule and CFC Commu-
nications capsule) to handle the local track data. The new 
design uses two Track Registry capsules (A and B) working 
in tandem to maintains the SFP’s master list of all perceived 
valid tracks as well as any additional tracks received from 
the Sensor Net, and allows them to communicate with Track 
List Receiving capsule directly. Only one Track Registry 
capsule is active at a time.  The other is in a semi-active 
state, in which it is receiving all updates from the Track 

Table 11. Varying Master Track List Broadcast Times 

Table 12. Varying Data Rate between Capsules 

Figure 13. The Original Track List Sub-capsule 
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Figure 14. The Modified Track List Sub-capsule 
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Correlation capsule but its data is not being used by the 
Track Correlation capsule until it receives a copy of the 
master track list from the Track List Receiving capsule that 
is newer than the one held by its active counterpart. When 
that happens, it goes active and directs the other active cap-
sule to go into semi-active mode. 

Based on the results of the simulation with the redesigned 
TLC, we conclude that the redesign is not sufficient, and 
that a redesign of the Sensor Fusion Processor as a whole, 
which would probably place a slave TLC off of the master 
TLC local to each of the fusing capsules, would be required 
to reduce the load on the Track List capsule and prevent the 
system from bottlenecking there. This type of feedback- 
refinement loop is key to ensuring success in the develop-
ment of any complex system. 

We found that the use cases feed directly into the UML-RT 
models, which in turn flow directly into the OMNeT++ 
simulation. OMNeT++, being an open-source project, is 
rapidly becoming a popular simulation platform in the sci-
entific community as well as in industrial settings. In addi-
tion to its rich set of tools for the construction, execution, 
and analysis of discrete-event simulations, there is a rapidly 
growing library of reusable models and code for rapid con-
struction of simulations. The mappings between the cap-
sules, ports and connectors of the UML-RT model and the 
modules, gates, and connections of the OMNeT++ models 
are straight forward and can be easily automated with a 
simple translation tool. 
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